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Generalizedq analysis of log-periodicity: Applications to critical ruptures
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We introduce a generalization of theq analysis, which provides a nonparametric tool for the description and
detection of log-periodic structures associated with discrete scale invariance. We use this generalizedq analysis
to construct a signature called the (H,q) derivative of discrete scale invariance, which we use to detect the
log-periodicity in the cumulative energy release preceding the rupture of five pressure tanks made of composite
carbon-matrix material. We investigate the significance level of the spectral Lomb periodogram of the optimal
(H,q) derivative. We confirm and strengthen previous parametric results that the cumulative energy release
exhibits log-periodicity before rupture. However, our tests to use this method as a scheme for the prediction of
the critical value of the stress at rupture are not encouraging.
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I. INTRODUCTION

The fracture of materials is a catastrophic phenomeno
considerable technological and scientific importance. Ho
ever, a reliable identification of precursory signatures of i
pending failure is lacking in most cases. A notable except
has been found@1,2# in the analysis of acoustic emission
recorded during the pressurization of spherical tanks of k
lar or carbon fibers preimpregnated in a resin matrix wrap
up around a thin metallic liner~steel or titanium! fabricated
and instrumented by Ae´rospatiale-Matra, Inc.~now EADS!.
A recent thorough analysis@3# of the seven acoustic emissio
recordings of seven pressure tanks that were brought to
ture has unambiguously characterized the acceleration o
acoustic energy ratedE/dt and found it to be in agreemen
with a power-law ‘‘divergence’’ expected from the critica
point theory proposed in Ref.@4#. In addition, strong evi-
dence of log-periodic corrections was found@3# that quantify
the intermittent succession of accelerating bursts and qu
cent phases of the acoustic emissions on the approac
rupture. Reference@3# also proposed an improved model a
counting for the crossover from the noncritical to the critic
region close to the rupture point exhibits interesting pred
tive potential. The critical rupture concept, confirmed
other experiments@5#, opens the road toward industrial a
plications involving heterogeneous materials such as fi
composites, rocks, concrete under compression, and ma
als with large distributed residual stresses@6#.

However, a time-to-failure behavior following a powe
law dE/dt}(tc2t)2a does not provide a reliable and uniqu
signature: fits of noisy data by such power laws are not
ously unreliable; for instance, an error of 1% in the determ
nation of tc usually leads to errors of tens of percent for t
exponenta. In addition, the determination oftc is very sen-
sitive to the presence of noise. In order to improve the de
mination oftc , the existence of log-periodic oscillations h
been found to be useful@1,7,8# and has been used for th
implementation of prediction schemes@1–3# with reasonable
success.
1063-651X/2002/66~4!/046111~8!/$20.00 66 0461
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The demonstration of the existence of log-periodic corr
tions to the power law is of both fundamental and practi
interest. From a fundamental point of view, log-periodic
signals a spontaneous hierarchical organization of dam
with an approximate geometrical set of characteristic sca
A possible mechanism involves a succession of ultravio
instabilities of the Mullins-Sekerka type@9# ~see also@10# for
a review!. More generally, the presence of log-periodici
signals the partial breaking of continuous scale invaria
into discrete scale invariance, which requires that the un
lying field theory be nonunitary@11#. From a practical view-
point, log-periodicity may help to lock in the fit on exper
mental data to obtain a better precision on the recovery of
critical rupture timetc @1–3#.

However, most of the evidence of log-periodicity in ru
ture results from parametric fits of the experimental or n
merical data by a log-periodic power-law formula, except
Ref. @7#, which introduced a ‘‘canonical’’ averaging metho
to extract the log-periodic signal directly. Parametric fits s
fer from two problems:~i! the formula cannot avoid som
simplification that, for instance, omits the presence of h
monics and/or other structures;~ii ! parametric fits are deli-
cate due to possible degeneracies and, in addition, their
tistical significance~i.e., added value! is difficult to estimate.
It is thus important to develop further nonparametric tes
Our goal here is to present a nonparametric method that
turn out to be very powerful in identifying log-periodicity in
noisy data.

Our method is based on the concept of aq derivative, the
inverse of the Jacksonq integral @12#, which is the natural
tool @13,14# for describing discrete scale invariance. Indee
q derivatives can be identified with the generators of frac
and multifractal sets with discrete dilatation symmetries@14#.
Nowhere differentiable functions that characterize fractal
multifractal sets turn out to be perfectly well behaved und
the q derivative. Discrete renormalization-group equatio
whose general mathematical solutions are power laws w
complex exponents~and hence exhibit log-periodicity!, can
be seen as merely Jacksonq integrals of regular functions o
©2002 The American Physical Society11-1
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the decimated degrees of freedom. Jacksonq integrals con-
stitute the natural generalization of regular integrals for d
cretely self-similar systems@14#. The way that the Jacksonq
integral can be related to the free energy of a spin system
a hierarchical lattice was explained in@13#.

In Sec. II, we introduce theq derivative and generalize i
to take into account anomalous scaling. We discuss the m
properties of the generalizedq derivative that will be useful
for our analysis of this paper. Section III presents our ana
sis with the generalizedq derivative of the acoustic emissio
data, for the cumulative energy release, obtained during
pressurization of spherical tanks of kevlar or carbon fib
preimpregnated in a resin matrix wrapped up around a
metallic liner ~steel or titanium!. For comparison, we us
exactly the same set of seven acoustic emission recording
the seven pressure tanks used in the previous study rep
in @3#. Our new results confirm strongly the existence
log-periodicity with a much enhanced confidence. Section
tests a scheme using the generalizedq derivative for predic-
tion purposes. Here, we find disappointing results: the p
metric approach in@3# turns out to be more powerful. Sectio
V concludes.

II. THE GENERALIZED q ANALYSIS
AND LOG-PERIODICITY

A. Definition

Let us take someqP(0, 1)ø(1,`). The q derivative of
an arbitrary functionf (x) is defined as

Dqf ~x!5
f ~x!2 f ~qx!

~12q!x
. ~1!

For q→1, the definition~1! recovers the usual definition of
derivative.

For qÞ1, Dqf (x) is more than just a derivative: it com
pares the relative variations off (x) and ofx whenx is mag-
nified by the finite factorq. It is thus intuitive that theq
derivative tests the scale invariance property of the func
f (x). As we said above, it was actually shown by Erzan a
Eckmann@14# that theq derivative is the natural tool fo
describing discrete scale invariance, since a fixed finitq
comparesf (x) with f (qx) at x magnified by a fixed factor
and thus it also comparesf (qx) with f (q2x), f (q2x) with
f (q3x), etc. Whenx is taken as the distance from a critic
point, Dqf (x) thus quantifies the discrete self-similarity
the function f (x) in the vicinity of the critical point. From
the definition~1!, it is clear that

D1/qf ~x!5Dqf ~x/q!. ~2!

It is thus enough to studyDqf (x) for qP(0, 1) to derive its
values for allq’s.

The necessary and sufficient condition for a functionf (x)
to be homogeneous with the orderc is

Dqf ~x!5
qc21

q21

f ~x!

x
. ~3!
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This expression suggests the introduction of a generalizeq
derivative that we call the (H,q) derivative, such that the
dependence inx of Dq

Hf (x) disappears for homogeneou
functions, for the choiceH5c. Consider, therefore, the fol
lowing definition:

Dq
Hf ~x!5

n f ~x!2 f ~qx!

@~12q!x#H
, ~4!

such that Dq
H51f (x) recovers the standardq derivative

Dqf (x). For a power-law function f (x)5Bxm,

Dq
H5m@Bxm#5B(12qm)/(12q)m is constant. For a statisti

cally homogeneous functionf (x)5
d

Bxm, Dq
H5mf (x)5

d
const,

where the symbol5
d

means equality in distribution.
The generalized (H,q) derivative has two control param

eters: the discrete scale factorq devised to characterize th
log-periodic structure and the exponentH introduced to ac-
count for a possible power-law dependence, i.e., to cor
for the existence of trends in log-log plots.

B. Application to log-periodic functions

Since Erzan and Eckmann@14# showed that theq deriva-
tive is the natural tool for describing discrete scale inva
ance, it is natural to study the properties of the (H,q) deriva-
tive of the simplest function exhibiting discrete sca
invariance, namely a power law decorated by a simple l
periodic function,

y~x!5A2Btmxm1Ctmxmcos~v ln x!, ~5!

where the presence of a phasef5v ln t has been absorbe
in the definition ofx, 0,C,B, v52p f is the angular log-
frequency, andf is the log-frequency~not to be confused
with the previous functionf used in the previous subsection!.
This equation, wherex is interpreted as the normalized di
tancex5(pc2p)/t to a critical pointpc , has been used in
several works to describe material rupture@1,2,8,3#, precur-
sory patterns of large earthquakes@15#, rock bursts@16#, af-
tershocks@17,18#, and speculative bubbles preceding fina
cial crashes@19#.

The (H,q) derivative ofy(x) is

Dq
Hy~x!5xm2H@B81C8g~x!#, ~6!

where

B852
Btm~12qm!

~12q!H
, C85

Ctm

~12q!H
, ~7!

and

g~x!5C1cos~v ln x!1C2sin~v ln x!, ~8!

with C1512qmcos(v ln q).0 andC25sin(v ln q). The spe-
cial choiceH5m gets rid of the power law and the (H,q)
derivative Dq

Hy(x) is, up to an additive constant, propo
tional to the pure log-periodic functiong(x).
1-2
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For the special choicesq5e2n2p/v, wheren is a positive
integer corresponding to choosingq equal to one of the pre
ferred scaling factors of the log-periodic function, we obta
C1512qm andC250. Therefore, the (H,q) derivative of-
fers a approach for detecting the preferred scaling factor
the discretely scale invariant function by a measure of
phase: those values ofq such that the phases of the (H
5m,q) derivative are that of a pure cosine should qualify
the preferred scaling factors. Such phases, for instance,
be measured by the Hilbert transform. Here, we do not p
sue this possibility, which will be explored in another pr
sentation.

It is easy to show thatg(x) is extremal atxm solution of

v ln~xm!5np1arctan~C2 /C1!, ~9!

where n50,61,62, . . . , andthat the extreme values o
g(x) are

g~xm!56AC1
21C2

2. ~10!

The amplitude ofDq
Hy(x) is then

A5xm
m2HC8AC1

21C2
2, ~11!

while the successive extreme values are

Dm5~B86C8AC1
21C2

2!~xm!m2H, ~12!

whereB8 andC8 are defined in Eqs.~7!. By fixing H close to
m, one can in principle obtain the amplitudeAm to be con-
stant as a function ofx. This valueH5m should provide
theoretically the most significant log-periodic compone
quantified, for instance, by the largest peak of the Lo
periodogram. However, in practice, the noise embedde
the data may distort the log-periodic oscillations and
most significant log-periodicity may occur forHÞm. The
introduction ofH can then be seen more generally as affo
ing a convenient detrending scheme.

Figure 1 showsy(x) defined in Eq.~5! as a function of
the distancex to the critical point withA51260, B5300,
C56, m50.3, v55.4, andf50. Figure 2 shows its gen
eralizedq derivative withq50.5 for H50.2, H50.3, and
H50.4, respectively. This generalizedq derivative has been
calculated by using the incorrect assumption that the crit
point is atx51 in order to also show the distortion resultin
from an error in the determination of the critical point. Th
distortion becomes important whenx is not large compared
to 1. We observe that the amplitude of the oscillations
Dq

Hy(x) increases withH when going towards the critica
point x50, in agreement with the prediction~11!.

In the next section, using the (H,q) analysis, we test for
the presence of log-periodicity in the cumulative energy
lease obtained in the experimental recordings of the se
pressure tanks used in the previous study reported in@3#.
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III. INVESTIGATION OF THE SIGNIFICANCE OF
LOG-PERIODICITY IN ACOUSTIC EMISSION ENERGY

RELEASE USING THE „H ,q… ANALYSIS

A. Data sets

In order to illustrate our new method of (H,q) analysis
for the description of log-periodic oscillations in comple
systems, we apply it to critical ruptures. We revisit the d
of acoustic emissions recorded during the pressurization
spherical tanks of kevlar or carbon fibers preimpregnated
resin matrix wrapped up around a thin metallic liner~steel or
titanium! fabricated and instrumented by Ae´rospatiale-Matra,
Inc. ~now EADS!. We use the same notations to label t
data sets as used in Ref.@3#. The true valuepc of the pressure

FIG. 1. Plot of y(x) defined by Eq.~5! as a function of the
pressure-to-rupturex with A51260, B5300, C56, m50.3, v
55.4, andf50. We generated 120 evenly spaced data points w
x between 1 and 120, to mimic the cumulative energy release
real acoustic emission experiment. The variablesx andy are dimen-
sionless.

FIG. 2. The generalizedq derivative ofy(x) shown in Fig. 1
with q50.5 for H50.2, H50.3, andH50.4, respectively. The
calculation assumes a critical point atxc51 while the synthetic
function has its genuine critical point atxc50. This incorrect value
of the critical point in the calculation of the generalizedq derivative
is responsible for the distortions observed for ln(x),1. The gener-
alizedq derivative andx are dimensionless.
1-3
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WEI-XING ZHOU AND DIDIER SORNETTE PHYSICAL REVIEW E66, 046111 ~2002!
at which rupture occurred is used in order to define
pressure-to-failurepc2p quantifying the distance to th
critical rupture point. Note that all pressures are expresse
units of bars.

In our analysis, we exclude data sets of pressure tanks
5 and No. 7, because for these two data sets,plast!pc ~the
last data point recorded is for a pressure far below the crit
rupture value!. This leads to few oscillations and low stati
tical significance. For instance, data set No. 5 haspc5797,
plast5713, and pmin5110.5 so that the number of log
periodic oscillations isf ln(pc2pmin)/ln(pc2plast)'3, where
we made no truncation on the low-pressure end and us
large frequencyf 51.42 fitted in Ref.@3# ~see Table 4 in tha
reference! instead of the average frequencyf 50.86. The
data set No. 7 presents even fewer oscillations. This lead
insufficient statistical significance and we are thus left
analyze five data sets: No. 1, No. 2, No. 3, No. 4, and No

We follow @3# and use the acoustic emission data recor
for pressures sufficiently high so that a noticeable accel
tion in the cumulative energy release takes place. This ch
is not crucial at all, since the (H,q) analysis is not sensitive
to the points far from the critical point. We also exclude t
last six points nearest topc because they contain the large
noise and may suffer from finite-size effects that may lead
serious distortions. The data were recorded with an appr
mately evenly spaced sampling, so that the sampling
quency close to the critical point (p→pc) becomes compa
rable to or even smaller than the underlying log-frequency
the ln(pc2p) axis. Again, this choice is not crucial and tes
performed with different numbers of points removed gi
similar results.

B. Detection of log-periodicity

In the analysis,q ranges from 0.1 to 0.9 with spacing 0.
while H takes values from20.9 to 0.9 with spacing 0.1. Thi
defines 93195171 parameter pairs (H,q). For each param-
eter pair (H,q), we calculate the generalizedq derivative of
the cumulative energy release. We then perform a spe
analysis of the generalizedq derivative using the Lomb pe
riodogram method@20#, in order to test for the statistica
significance of possible log-periodic oscillations. For ea
(H,q) pair, the highest peakPN(H,q) and its associated an
gular log-frequencyv(H,q) in the Lomb periodogram are
obtained. The basic criterion used to identify a log-perio
signal is the strength of the Lomb periodogram analysis,
the height of the spectral peaks.

We shall not present all results for all five data sets
cause they are completely similar. A description of the ty
cal results obtained for data set No. 1 and presented in F
3–6 will be sufficient. Figure 4 shows the dependence of
highest peakPN(H,q) in each Lomb periodogram as a fun
tion of H and q, while Fig. 3 gives the associated angu
log-frequenciesv(H,q). In Fig. 4, the pairs (H,q) near
(20.2, 0.1) give the largestPN556.3, which should imply
the most significant log-periodic oscillations in the gener
ized q derivative. However, the associatedv'1.5 in the re-
gion B of Fig. 3 is dangerously too low as it corresponds
only one oscillation in the signal. It is obvious that the spe
04611
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tral analysis cannot distinguish in this case any underly
oscillations from a global trend of the (H,q) derivative.
There is an additional caveat: the log-frequencies in the
gion B are close to the most probable~log-periodic! angular
frequencyvmp51.8, resulting solely from the most probab
noise. It was indeed shown@17# that noise-decorating powe
laws may lead to artifactual log-periodicity with a most pro
able frequency corresponding roughly to 1.5 oscillatio
over the whole range of analysis. In the present context,
defines the most probable~log-periodic! angular frequency
vmp by the following formula:

vmp5
2p31.5

ln~pc2pmin!2 ln~pc2pmax!
, ~13!

where the acoustic emission signal is recorded from the p
surepmin to pmax. In the case of experiment No. 1, this lea
to vmp51.8. Thus, a value ofv<vmf corresponds to at mos
1.5 oscillations in the plot of the generalizedq derivative as

FIG. 3. Dependence of the angular log-frequencyv(H,q) of the
most significant peak in each Lomb periodogram of the (H,q) de-
rivative of the cumulative energy release before the rupture of t
No. 1. The wedgeW and the bottomB are excluded by the criteria
discussed in the text. The optimal pair (20.5, 0.6) is indicated by
an arrow in the platformP. The variables are dimensionless.

FIG. 4. Dependence of the heightPN(H,q) of the most signifi-
cant peak in each Lomb periodogram of the (H,q) derivative of the
cumulative energy release before the rupture of tank No. 1.
variables are dimensionless.
1-4
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GENERALIZED q ANALYSIS OF LOG-PERIODICITY: . . . PHYSICAL REVIEW E 66, 046111 ~2002!
a function of ln(pc2p) for the whole range of pressure. Th
is insufficient to be able to conclude about the existence
log-periodicity with good statistical confidence. To quali
the existence of log-periodicity, pairs of (H,q) with
v(H,q)<vmp should be discarded, because, for these v
ues, there is a non-negligible probability that the obser
log-periodicity may result from noisy fluctuations around t
power law and is thus spurious@17#.

A physically meaningful region of (H,q) is thus obtained,
labeled byP ~platform! and W ~wedge! in Figs. 3 and 4.
Among these pairs, the optimal pair (H,q)5(20.5, 0.6) cor-
responds to the highest Lomb peakPN551.7, indicated by
arrows in Fig. 3 and Fig. 4. It lies within the platformP
shown in Fig. 3. Figure 5 gives the generalizedq derivative
for this optimal pair (H,q)5(20.5, 0.6), while Fig. 6 plots
its corresponding Lomb periodogram. The log-periodic os
lations are found to be very significant. Ideally, we shou
estimate the probability that random noise, of several pl
sible standard distributions, creates a false alarm that a p

FIG. 5. (H,q) derivative of the cumulative energy release b
fore the rupture of tank No. 1 as a function of the logarithm of t
pressure-to-rupturepc2p with q50.6 andH520.5. The variables
are dimensionless.

FIG. 6. Lomb power of the (H,q) derivative shown in Fig. 5.
The variables are dimensionless.
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odicity ~or log-periodicity! is found in the (H,q) derivative
of the signal. This has been done in a systematic way fo
large variety of noises, without and with long-range corre
tion @21#. However, it is difficult to identify what should be
the correct null hypothesis of the noise decorating the g
eralizedq derivative. Under the null hypothesis of indepe
dent Gaussian noise decorating the signal, the false-a
probability of the log-periodic component is'5310221.
The false-alarm probability for the null hypothesis of ind
pendent heavy-tailed noises~say, Lévy stable noise and
power-law noise! and weakly correlated noises@say,
GARCH~1,1! noise and fractional Gaussian noise~fGn! with
the Hurst index less than 0.5# is even lower@21#. If we as-
sume a strongly correlated noise such as fractional Gaus
noise with the Hurst index greater than 0.5, the false-ala
probability increases: for instance, a fractional Gauss
noise with a Hurst index of 0.98 leads to a false-alarm pr
ability of 1% @21#.

It is worth noting that the majority of the pairs (H,q) in P
have similar oscillatory behavior~i.e., similarv) indicating a
robust log-periodic signal. Moreover, we note that a lo
periodic angular frequency which is too small may res
from noise, as we just said. Similarly, a too high log-period
angular frequency is also the signature of noise, simply
cause it is easy to fit noisy data with many oscillations. W
should thus also discard the pairs of (H,q) whosev are too
large. Reference@3# used this criterion to discard solution
with v>14. It is not always obvious to determine the val
of the angular frequency threshold beyond which solutio
should be rejected as noise. Fortunately, the Lomb peakPN
corresponding to a large angular frequency stemming fr
noise is usually low@21#, as we observed in experiments N
4 and No. 6~not shown!.

We summarize in Table I the results of the (H,q) analysis
on the cumulative energy release of data sets No. 1, No
No. 3, No. 4, and No. 6. For each data set, the generalizeq
analysis was performed between (pmin , pmax), with a number
of points varying between 55 and 164 as indicated in
column ‘‘N’’ in the table. pc is the true critical pressure a
rupture.PN is the optimal value of the Lomb peak heigh
andv ~andv8 if it exists! is the corresponding angular log
frequency of the highest peak~respectively the second high
est peak!. The column ‘‘Gaussian’’ presents the false-alar
probability of the Lomb peak under the null hypothesis
independent Gaussian noise. The column ‘‘fGn’’ evalua
the value of the Hurst index of a fractional Brownian noi
which would give a false-alarm probability 1% to get th
same peak as in our analysis. The larger this number is,
more significant is the Lomb peak because a high Hurst
dex is very improbable as it implies an unreasonable lo
range dependence and persistence of the noise@21#.

These two columns ‘‘Gaussian’’ and ‘‘fGn’’ thus give us
sense of the amplitude of the signal over noise ratio, from
point of view of the statistical significance of the pea
found in the analysis. The conclusion derived from read
these two columns is that it is highly improbable that t
obtained peaks result from a Gaussian noise and one w
need a very strong persistence in a fractional Brownian no
to simulate the obtained signatures. This holds regardles

-

1-5
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TABLE I. Summary of the results of the (H,q) analysis on the cumulative energy release of data sets No. 1, No. 2, No. 3, No. 4, an
6. For each data set, the generalizedq analysis was performed between (pmin , pmax) with a number of points given in the columnN. pc is the
true critical pressure of rupture. The column (H,q) lists the optimal pairs.PN is the optimal value of the Lomb peak height.v andv8 are
the corresponding angular log-frequencies of the highest and second highest peak.Nosc is the number of oscillations. The column ‘‘Gaussian
presents the false-alarm probability of the Lomb peak under the null hypothesis of independent Gaussian noise. The column ‘‘fGn’’
Hurst index of a fractional Gaussian noise that would give a false-alarm probability 1% to obtain the same Lomb peak as in th
Pressures are expressed in units of bars.

Tank N pmin pmax pc (H,q) PN v v8 vmp Nosc Gaussian fGn

No. 1 144 453.5 711.5 713 (20.5, 0.6) 51.7 5.5 / 1.8 4.6 5E-21 0.98
No. 2 138 467.5 661.5 673 (0.3, 0.2) 34.4 10.0 5.3 3.3 4.5 2E-13 0.
No. 3 63 671.5 756.5 764 (20.2, 0.4) 14.5 4.5 9.9 3.8 1.8 5E-5 0.70
No. 4 56 671.5 746.5 756 (0, 0.6) 19.0 5.5 17.5 4.3 1.9 3E-7 0.7
No. 6 72 614.5 723.5 734 (20.3, 0.8) 15.7 12.7 5.4 3.9 4.9 1E-5 0.71
r
a
th
o

ow
t
m
in

a

-

Eq
or
e

ib

m
th
a

e
ge
ze

he
ua

te

ncy
eak

set
hat
the
set

the
No.
le
less

that
rate
nd

t a

g
al

rs
ks lie
the rather small size of the data sets. Since the numbe
data points is limited, it is important to quantify as much
possible the amplitude of the signal compared to that of
noise. To quantify the impact of noise on the detectability
log-periodicity in signals with short events series, we n
estimate the signal-to-noise ratiog. For this, we assume tha
the noise is independent of the underlying log-periodic co
ponents. Since the events are not badly bunched, follow
@22#, we have

PN5
N

2 S 11
2s2

A2 D 21

, ~14!

wheres is the standard deviation of the noise andA is the
amplitude of the signal. The signal-to-noise ratio defined
g5A/s can thus be estimated by

g5S 4PN

N22PN
D 1/2

, ~15!

whereN is the number of events~data points in one experi
ment!. Using this formula, we obtainedg52.44, 1.48, 1.44,
2.52, and 1.35 for the five tanks, respectively. Note that
~15! holds approximately for all types of noises, not only f
Gaussian noise@22,21#. These different tests confirm that w
are extracting meaningful information, above an~admittedly!
large noise level.

We find that all data sets taken together can be descr
by a fundamental value of the angular log-frequencyv
55.460.5. To see this, we construct the average Lo
power spectrum over the five Lomb power spectra for
five experiments, which is shown in Fig. 7. The highest pe
lies at f 50.87, i.e., atv52p f 55.4. We cannot estimat
quantitatively the false-alarm probability of this avera
Lomb peak since the different data sets have different si
We observe that this log-frequencyf 50.87 ~or v55.4) is
found to be very close to either the log-frequency of t
highest or of the second highest peak of each individ
spectrum of the five data sets. This valuef 50.87 corre-
sponds to a preferred scaling ratiol5e1/f53.260.3.

The log-frequencyf 251.60 ~or v2510.1) of the second
highest peak of the average Lomb spectrum can be in
04611
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preted as the first harmonic of the fundamental log-freque
f 50.87. This log-frequency corresponds to the highest p
of data set No. 2 and to the second highest peak of data
No. 3. It is not unexpected to find in nonlinear systems t
the first harmonic may be a stronger power spectrum than
fundamental frequency. The second highest peak of data
No. 4 can be interpreted as the second harmonics of
fundamental log-frequency. The highest peak of data set
6 occurs for a log-frequency almost exactly in the midd
range between the first and second harmonics and is thus
credible.

These results taken together give a reliable indication
there is a genuine log-periodicity of the energy release
before rupture in data sets No. 1, No. 2, No. 3, No. 4, a
No. 6. This confirms and strengthens the claim of Ref.@3#
that a pure power law fails to parametrize the data bu
log-periodic formula does a much better job.

IV. IN-SAMPLE PREDICTION OF RUPTURES

The (H,q) analysis has shown its power for detectin
log-periodicity, conditioned on our knowledge of the critic

FIG. 7. Averaged Lomb power of the individual Lomb powe
of all the five data sets. The highest and the second highest pea
at f 50.87 andf 251.60. The variables are dimensionless.
1-6
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pressurepc at rupture. It is natural to ask whether it can
extended to provide advanced prediction ofpc . To carry out
these tests, we use the cumulative energy release which
vided the strongest log-periodic signal in the analysis
ported in the previous sections.

Our strategy is to use each data set up to a maxim
pressurepmax,pc , assume some value forpc , and perform
the same analysis as in Sec. III. For a given presumed cri
point pc , we determine the optimal pair (H,q). For each
presumed pc , we thus obtain the Lomb peak heig
PN(H,q) and its associated angular log-frequencyv(H,q)
as a function ofH andq. In order to find the optimal (H,q)
corresponding to the maximumPN(H,q), we add the criteria
discussed in Sec. III B@see formula~13!# to exclude those
(H,q) with v(H,q)<vmp. Having determined the optima
PN(pc) andv(pc) as functions of the presumed critical pre
surepc , we determine the predicted critical pressurep̂c by
the condition

FIG. 8. In-sample prediction of the critical pressure of the ru
ture of tank No. 1. The optimal Lomb peak heightPN is shown as
a function of the presumed critical pressurepc for experiment No. 1

and for pmax5705.5. The highest peak is found forpc5 p̂c
(1)

5722.5, which is the predictedpc , to be compared with the true
value 713. The two fine arrows indicate the upper threshold

predictablep̂c estimated by Eq.~18! with k54/3 andk51. The

coarse arrow indicates the predicted critical pressuresp̂c
(1) andp̂c

(2).
The ordinate variable is dimensionless.
04611
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PN~ p̂c!5max
pc

$PN~pc!%, ~16!

without further constraints onv(pc).
In practice, we analyze the functionPN(pc ; H,q) of the

three variablespc , H, andq in the following sequence: we
fix a value for pc and explore the plane (H,q). We then
changepc and redo the exploration of the plane (H,q), and
so on. Figure 8 gives the optimal Lomb peak heightPN as a
function of the presumed critical pressurepc for experiment
No. 1 and forpmax5705.5. The highest peak is found fo
pc5 p̂c

(1)5722.5, which is the predictedpc , to be compared
with the true value 713.

This result is encouraging and we now attempt to impro
this prediction skill by requesting that the predictedpc
should not be too far from the last point, i.e., it is nonsens
to predict too far from the ‘‘present.’’ To implement this ide
we modify formula~13! and imposev.kvmp, namely,

v

2p
.

1.5k

ln~pc2pmin!2 ln~pc2pmax!
, ~17!

where k>1 is a ‘‘safety factor.’’ This constraint translate
into the following condition forpc :

pc,pmax1
pmax2pmin

e3kp/v21
. ~18!

This constraint~18! means that there exists an upper thre
old beyond which we cannot make a physically meaning
prediction. Since the left-hand side of~18! is monotonically
increasing withv, it is possible to make a prediction muc
earlier before the critical point, the largerv is. This is natural
since largev implies more log-periodic oscillations and thu
a stronger log-periodic signal. To implement this condition
practice, we takev55.4 as the central value of the log
periodic angular frequency. According to this constraint~18!,
ruptures of tanks No. 5 and No. 7 are unpredictable, since
last pointplast is too far from the true critical pressure.

The results are given in Table II. The columnsp̂c
(1) and

p̂c
(2) list the predicted critical pressurep̂c and its correspond

ing upper threshold in the parentheses with the constr
~18! for the two choicesk54/3 andk51, respectively. The
prediction for experiment No. 1 is very good. For the oth

-

f

No.

rs.
TABLE II. In-sample prediction using the (H,q) analysis on the cumulative energy release of tanks

1, No. 2, No. 3, No. 4, and No. 6. Columnsp̂c
(1) and p̂c

(2) list the predicted critical pressurep̂c and its
corresponding upper threshold in the parentheses with the constraint~18! for k54/3 andk51, respectively.
The meaning of the other columns is the same as in Table I. Pressures are expressed in units of ba

Tank Points pmin pmax v pc

pc2pmax

pc p̂c
(1) p̂c

(2)

No. 1 139 453.5 705.5 5.5 713 1.1% 722.5~734! 722.5~761!
No. 2 149 452.5 662.5 5 673 1.6% 680.5~681! 686.5~700!
No. 3 65 671.5 759.5 4.5 764 0.6% 763.5~765! 767.5~772!
No. 4 56 671.5 746.5 5.5 756 1.3% 755.5~755! 755.5~763!
No. 6 74 614.5 726.5 6.4 734 1.0% 742.5~744! 758.5~759!
1-7
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experiments,p̂c is found to be very close to the upper thres
old. The predictions for experiments No. 2, No. 3, and No
are reasonable while the prediction for case No. 6 fails co
pletely.

While these results seem rather good, they deteriorate
tremely fast aspmax is decreased by a few tens of bars.

V. CONCLUDING REMARKS

In this paper, we have introduced a nonparametric tool
the detection of log-periodicity in complex systems. We ha
applied this method to analyze the cumulative energy rele
during the period approaching critical ruptures. We have c
firmed and strengthened previous parametric results@3# that
the cumulative energy release exhibit log-periodicity bef
rupture. We remark that the data of the energy release
should have the same log-periodic structure.

The nonparametric method in its present implementa
does not seem reliable for the prediction of the critical pr
J.

s.

et
n,

.
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sure at rupture. However, it can be a useful complement
confirmation to the parametric method, consisting in fitti
the data to a log-periodic function with a power-law env
lope. Rather than analyzing the statistical significance of
residues of such a fit with respect to the presence of l
periodicity, we can use the fitted value of the critical press
pc at rupture to perform an (H,q) analysis and extractv and
its associated Lomb power spectrum in order to qualify
statistical significance. This could be used to confirm/de
the quality of the parametric fit.
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