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Generalizedq analysis of log-periodicity: Applications to critical ruptures
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We introduce a generalization of tigeanalysis, which provides a nonparametric tool for the description and
detection of log-periodic structures associated with discrete scale invariance. We use this gertpaalatesis
to construct a signature called thel ) derivative of discrete scale invariance, which we use to detect the
log-periodicity in the cumulative energy release preceding the rupture of five pressure tanks made of composite
carbon-matrix material. We investigate the significance level of the spectral Lomb periodogram of the optimal
(H,q) derivative. We confirm and strengthen previous parametric results that the cumulative energy release
exhibits log-periodicity before rupture. However, our tests to use this method as a scheme for the prediction of
the critical value of the stress at rupture are not encouraging.
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I. INTRODUCTION The demonstration of the existence of log-periodic correc-
tions to the power law is of both fundamental and practical
The fracture of materials is a catastrophic phenomenon ahterest. From a fundamental point of view, log-periodicity
considerable technological and scientific importance. Howsignals a spontaneous hierarchical organization of damage
ever, a reliable identification of precursory signatures of im-with an approximate geometrical set of characteristic scales.
pending failure is lacking in most cases. A notable exceptiorA possible mechanism involves a succession of ultraviolet
has been foundl1,2] in the analysis of acoustic emissions instabilities of the Mullins-Sekerka tyd8] (see als¢10] for
recorded during the pressurization of spherical tanks of keva review. More generally, the presence of log-periodicity
lar or carbon fibers preimpregnated in a resin matrix wrappedignals the partial breaking of continuous scale invariance
up around a thin metallic lineisteel or titanium fabricated  into discrete scale invariance, which requires that the under-
and instrumented by Aespatiale-Matra, Incinow EADS. lying field theory be nonunitar11]. From a practical view-
A recent thorough analysf8] of the seven acoustic emission point, log-periodicity may help to lock in the fit on experi-
recordings of seven pressure tanks that were brought to ruprental data to obtain a better precision on the recovery of the
ture has unambiguously characterized the acceleration of thaitical rupture timet, [1-3].
acoustic energy ratdE/dt and found it to be in agreement However, most of the evidence of log-periodicity in rup-
with a power-law “divergence” expected from the critical ture results from parametric fits of the experimental or nu-
point theory proposed in Ref4]. In addition, strong evi- merical data by a log-periodic power-law formula, except for
dence of log-periodic corrections was fourd] that quantify ~ Ref. [7], which introduced a “canonical” averaging method
the intermittent succession of accelerating bursts and quiese extract the log-periodic signal directly. Parametric fits suf-
cent phases of the acoustic emissions on the approach fer from two problemsii) the formula cannot avoid some
rupture. ReferenckS] also proposed an improved model ac- simplification that, for instance, omits the presence of har-
counting for the crossover from the noncritical to the criticalmonics and/or other structure@i) parametric fits are deli-
region close to the rupture point exhibits interesting prediccate due to possible degeneracies and, in addition, their sta-
tive potential. The critical rupture concept, confirmed bytistical significancei.e., added values difficult to estimate.
other experiment$5], opens the road toward industrial ap- It is thus important to develop further nonparametric tests.
plications involving heterogeneous materials such as fibe©ur goal here is to present a nonparametric method that will
composites, rocks, concrete under compression, and matetisrn out to be very powerful in identifying log-periodicity in
als with large distributed residual stres$é% noisy data.
However, a time-to-failure behavior following a power  Our method is based on the concept af derivative, the
law dE/dto (t.—t) ~“ does not provide a reliable and unique inverse of the Jacksog integral[12], which is the natural
signature: fits of noisy data by such power laws are notoritool [13,14] for describing discrete scale invariance. Indeed,
ously unreliable; for instance, an error of 1% in the determi-q derivatives can be identified with the generators of fractal
nation oft; usually leads to errors of tens of percent for theand multifractal sets with discrete dilatation symmetfie4§.
exponente. In addition, the determination @f is very sen-  Nowhere differentiable functions that characterize fractal or
sitive to the presence of noise. In order to improve the detemmultifractal sets turn out to be perfectly well behaved under
mination oft;, the existence of log-periodic oscillations has the q derivative. Discrete renormalization-group equations,
been found to be usefyll,7,8 and has been used for the whose general mathematical solutions are power laws with
implementation of prediction schemjgls-3] with reasonable complex exponentsand hence exhibit log-periodicitycan
success. be seen as merely Jacksgimtegrals of regular functions of
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the decimated degrees of freedom. Jackgaontegrals con-  This expression suggests the introduction of a generatized
stitute the natural generalization of regular integrals for dis-derivative that we caII theH,q) derivative, such that the
cretely self-similar systenfd4]. The way that the Jacksan  dependence inx of D" qf(x) disappears for homogeneous
integral can be related to the free energy of a spin system ofunctions, for the choice! — . Consider, therefore, the fol-

a hierarchical lattice was explained [ib3]. lowing definition:
In Sec. Il, we introduce thq derivative and generalize it
to take into account anomalous scaling. We discuss the main Af(x)—f(gx)
properties of the generalizegiderivative that will be useful Dgf(X)=——, (4)
for our analysis of this paper. Section Ill presents our analy- [(1=a)x]

sis with the generalized derivative of the acoustic emission He1 L
data, for the cumulative energy release, obtained during th uch thatDq "f(x) recovers the stan_darq derlvatln\qle
f(x). For a power-law function f(x)=Bx",

pressurization of spherical tanks of kevlar or carbon fiber
preimpregnated in a resin matrix wrapped up around a thif}~"[Bx™]=B(1—qg™)/(1—q)™ is constant. For a statisti-
metallic liner (steel or titanium For comparison, we use
exactly the same set of seven acoustic emission recordings o
the seven pressure tanks used in the previous study reportédnere the symbor means equality in distribution.

in [3]. Our new results confirm strongly the existence of The generalizedH,q) derivative has two control param-
log-periodicity with a much enhanced confidence. Section I\eters: the discrete scale factprdevised to characterize the
tests a scheme using the generaligederivative for predic-  log-periodic structure and the exponetintroduced to ac-
tion purposes. Here, we find disappointing results: the paraeount for a possible power-law dependence, i.e., to correct
metric approach ifi3] turns out to be more powerful. Section for the existence of trends in log-log plots.

V concludes.

?Ilyhomogeneousfuncudi{x) Bx™, DH mf(x)—const

B. Application to log-periodic functions

Il. THE GENERALIZED ¢ ANALYSIS Since Erzan and Eckmarii4] showed that the deriva-
AND LOG-PERIODICITY tive is the natural tool for describing discrete scale invari-
A. Definition ance, it is natural to study the properties of thq) deriva-

o tive of the simplest function exhibiting discrete scale
Let us take some e (0, 1)U(1,%). Theq derivative of  invariance, namely a power law decorated by a simple log-

an arbitrary functiorf(x) is defined as periodic function,
f(x)—f(gx) X)=A—B7™x"+ C7"x"cog w InX), 5
Dt =01 @ Y(x)=A=B7"™™+C7"™x"cogw Inx) (5)

where the presence of a phage- w In 7 has been absorbed
in the definition ofx, 0<C<B, w=2f is the angular log-
frequency, and is the log-frequency(not to be confused
with the previous functio used in the previous subsectjon
This equation, where is interpreted as the normalized dis-
tancex=(p.—p)/ 7 to a critical pointp., has been used in

derivative tests the scale invariance property of the functior?€Veral works to describe material ruptdite2,8,3, precur-
f(x). As we said above, it was actually shown by Erzan andO'y patterns of large earthquakds, rock burstg16], af-
Eckmann[14] that theq derivative is the natural tool for tgrshocks[l? 18, and speculative bubbles preceding finan-
describing discrete scale invariance, since a fixed figite cial crashes19]. R .

comparesf(x) with f(gx) at x magnified by a fixed factor, The (H.q) derivative ofy(x) is

and thus it also compardgqx) with f(g%x), f(g?x) with

Forg—1, the definition(1) recovers the usual definition of a
derivative.

Forg+1, D4f(x) is more than just a derivative: it com-
pares the relative variations 6fx) and ofx whenx is mag-
nified by the finite factorg. It is thus intuitive that theg

xm—H
f(q°x), etc. Whenx is taken as the distance from a critical Dy qY(¥)= [B"+C'g(0], ©®
point, Dqf(x) thus quantifies the discrete self-similarity of \\nare
the functionf(x) in the vicinity of the critical point. From
the definition(1), it is clear that Br"(1—q™) Cm
B=——————, C=—0 (@
D1qf(X) =D4f(X/). 2 (1-q) (1-q)
It is thus enough to stud,f(x) for qe (0, 1) to derive its and
values for allg’s. —C.cod wInx)+ Cosinfeln 8
The necessary and sufficient condition for a functi¢x) 9(x)=Cacogwinx)+ Cosin(wlnx), ®
to be homogeneous with the ordgrs with C;=1—qg™cosIn g)>0 andC,=sin(wIn g). The spe-
cial choiceH=m gets rid of the power law and thed(q)
Daf(x )_ q/-1 ) 3 derivative D{'y(x) is, up to an additive constant, propor-
-1 x tional to the pure log-periodic functiog(x).
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For the special choicag=e "?"“, wheren is a positive Looor
integer corresponding to choosiagequal to one of the pre- 900!
ferred scaling factors of the log-periodic function, we obtain
C,;=1—-g™ andC,=0. Therefore, theH,q) derivative of-
fers a approach for detecting the preferred scaling factors of 700
the discretely scale invariant function by a measure of its 600}

phase: those values af such that the phases of théd ( B 500
=m,q) derivative are that of a pure cosine should qualify as ™

the preferred scaling factors. Such phases, for instance, can 400
be measured by the Hilbert transform. Here, we do not pur- 3001
sue this possibility, which will be explored in another pre- 200}

sentation.
It is easy to show thag(x) is extremal at,, solution of

1001

% 2 40 60 8 100 120
wIn(xy,)=nm+arctafC,/C,), 9 ¥
FIG. 1. Plot ofy(x) defined by Eq.(5) as a function of the
pressure-to-rupturex with A=1260, B=300, C=6, m=0.3, o
andthat the extreme values of

wheren=0,+1,%2,..., =5.4, and¢=0. We generated 120 evenly spaced data points with

g(x) are x between 1 and 120, to mimic the cumulative energy release of a
real acoustic emission experiment. The variablaady are dimen-
g(Xyn)==* /C§+ C%. (10) sionless.
" I1l. INVESTIGATION OF THE SIGNIFICANCE OF
The amplitude oD y(x) is then LOG-PERIODICITY IN ACOUSTIC EMISSION ENERGY
RELEASE USING THE (H,q) ANALYSIS
A=xM-Hcryci+cs, (1) A. Data sets
In order to illustrate our new method oH(qg) analysis
while the successive extreme values are for the description of log-periodic oscillations in complex

systems, we apply it to critical ruptures. We revisit the data
of acoustic emissions recorded during the pressurization of
spherical tanks of kevlar or carbon fibers preimpregnated in a
resin matrix wrapped up around a thin metallic lifisteel or
whereB’ andC’ are defined in Eqg7). By fixing H close to  titanium) fabricated and instrumented by fspatiale-Matra,

m, one can in principle obtain the amplitude, to be con- Inc. (now EADS. We use the same notations to label the
stant as a function ok. This valueH=m should provide data sets as used in RE3]. The true valug, of the pressure
theoretically the most significant log-periodic component,

Dy=(B’+C’'\C5+C35)(Xm)™ ", (12)

quantified, for instance, by the largest peak of the Lomb 0
periodogram. However, in practice, the noise embedded in —_H=02
the data may distort the log-periodic oscillations and the -200™
most significant log-periodicity may occur fét#m. The
introduction ofH can then be seen more generally as afford- —q0}
ing a convenient detrending scheme.
Figure 1 shows/(x) defined in Eq.(5) as a function of g —60-
the distancex to the critical point withA=1260, B=300, Y

C=6, m=0.3, »=5.4, and¢$=0. Figure 2 shows its gen-
eralizedq derivative withq=0.5 for H=0.2, H=0.3, and
H=0.4, respectively. This generalizgdderivative has been
calculated by using the incorrect assumption that the critical
point is atx=1 in order to also show the distortion resulting
from an error in the determination of the critical point. This -120 1 2 3 n s
distortion becomes important whenis not large compared In(x)

to 1. We observe that the amplitude of the oscillations of FIG. 2. The generalized derivative ofy(x) shown in Fig. 1

DQY(X) increases wittH when going towards the critical it q=0.5 for H=0.2, H=0.3, andH=0.4, respectively. The
pointx=0, in agreement with the predictidal). calculation assumes a critical point ®t=1 while the synthetic

In the next section, using thed(q) analysis, we test for function has its genuine critical point &¢=0. This incorrect value
the presence of log-periodicity in the cumulative energy re-of the critical point in the calculation of the generalizgderivative
lease obtained in the experimental recordings of the seveig responsible for the distortions observed foi)r(1. The gener-
pressure tanks used in the previous study reporté@]in alized q derivative andk are dimensionless.

80

=100
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at which rupture occurred is used in order to define the
pressure-to-failurep.— p quantifying the distance to the
critical rupture point. Note that all pressures are expressed in
units of bars.
In our analysis, we exclude data sets of pressure tanks No.
5 and No. 7, because for these two data seig<p. (the
last data point recorded is for a pressure far below the critical 4
rupture valug This leads to few oscillations and low statis-
tical significance. For instance, data set No. 5 pgs 797,
Past= 713, and p,in=110.5 so that the number of log-
periodic oscillations i In(pPe— Pmin)/IN(Pe—Pras) =3, Where
we made no truncation on the low-pressure end and used a
large frequencyf = 1.42 fitted in Ref[3] (see Table 4 in that
reference instead of the average frequen€y0.86. The
data set No. 7 presents even fewer oscillations. This leads to FIG. 3. Dependence of the angular log-frequeng¥d ,q) of the
insufficient statistical significance and we are thus left tomost significant peak in each Lomb periodogram of tHeq) de-
analyze five data sets: No. 1, No. 2, No. 3, No. 4, and No. 6rivative of the cumulative energy release before the rupture of tank
We follow [3] and use the acoustic emission data recordedNo. 1. The wedgdV and the bottonB are excluded by the criteria
for pressures sufficiently high so that a noticeable acceleradiscussed in the text. The optimal pai 0.5, 0.6) is indicated by
tion in the cumulative energy release takes place. This choican arrow in the platfornP. The variables are dimensionless.
is not crucial at all, since theH,q) analysis is not sensitive
to the points far from the critical point. We also exclude thetral analysis cannot distinguish in this case any underlying
last six points nearest o, because they contain the largest 0scillations from a global trend of theH(q) derivative.
noise and may suffer from finite-size effects that may lead to'here is an additional caveat: the log-frequencies in the re-
serious distortions. The data were recorded with an approx@ion B are close to the most probalfleg-periodig angular
mately evenly spaced sampling, so that the sampling frefrequencyo™=1.8, resulting solely from the most probable
quency close to the critical pomp(_) pc) becomes compa- noise. It was indeed ShOV\[ﬂ.?] that noise-decorating power
rable to or even smaller than the underlying log-frequency ifaws may lead to artifactual log-periodicity with a most prob-
the In(.—p) axis. Again, this choice is not crucial and tests able frequency corresponding roughly to 1.5 oscillations

performed with different numbers of points removed giveOver the whole range of analysis. In the present context, this
similar results. defines the most probabléog-periodig angular frequency

»™ by the following formula:

B. Detection of log-periodicity 27%15

. . . mp—

[n the analysisg ranges from 0.1 to 9.9 W|th.spacmg O_.l, ® IN(Pe— Prmin) —IN(Pe— Pray) (13
while H takes values from- 0.9 to 0.9 with spacing 0.1. This
defines K 19=171 parameter paird{,q). For each param- where the acoustic emission signal is recorded from the pres-
eter pair {,q), we calculate the generalizegderivative of  surepp, t0 pmax. IN the case of experiment No. 1, this leads
the cumulative energy release. We then perform a spectrab »™=1.8. Thus, a value ab< ™ corresponds to at most
analysis of the generalizegiderivative using the Lomb pe- 1.5 oscillations in the plot of the generalizgdierivative as
riodogram method20], in order to test for the statistical
significance of possible log-periodic oscillations. For each
(H,q) pair, the highest peaRy(H,q) and its associated an-
gular log-frequencyw(H,q) in the Lomb periodogram are
obtained. The basic criterion used to identify a log-periodic
signal is the strength of the Lomb periodogram analysis, i.e.,
the height of the spectral peaks.

We shall not present all results for all five data sets be-
cause they are completely similar. A description of the typi- %
cal results obtained for data set No. 1 and presented in Figs.
3-6 will be sufficient. Figure 4 shows the dependence of the
highest pealPy(H,q) in each Lomb periodogram as a func-
tion of H and g, while Fig. 3 gives the associated angular
log-frequenciesw(H,q). In Fig. 4, the pairs ,q) near
(—0.2,0.1) give the larged®y=56.3, which should imply
the most significant log-periodic oscillations in the general- F|G. 4. Dependence of the heigRt,(H,q) of the most signifi-
ized g derivative. However, the associated-1.5 in the re-  cant peak in each Lomb periodogram of ti,§) derivative of the
gion B of Fig. 3 is dangerously too low as it corresponds tocumulative energy release before the rupture of tank No. 1. The
only one oscillation in the signal. It is obvious that the spec-variables are dimensionless.
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odicity (or log-periodicity is found in the H,q) derivative

of the signal. This has been done in a systematic way for a
large variety of noises, without and with long-range correla-
tion [21]. However, it is difficult to identify what should be
the correct null hypothesis of the noise decorating the gen-
eralizedq derivative. Under the null hypothesis of indepen-
dent Gaussian noise decorating the signal, the false-alarm
probability of the log-periodic component is5x 10 2%

The false-alarm probability for the null hypothesis of inde-
pendent heavy-tailed noisgsay, Lery stable noise and
power-law noisg and weakly correlated noisegsay,
GARCH(1,]) noise and fractional Gaussian noi$&n) with

, , the Hurst index less than (.5 even lowef21]. If we as-

4 5 6 sume a strongly correlated noise such as fractional Gaussian
noise with the Hurst index greater than 0.5, the false-alarm

FIG. 5. (H,q) derivative of the cumulative energy release be- probability increases: for instance, a fractional Gaussian
fore the rupture of tank No. 1 as a function of the logarithm of theNCiS€ With a Hurst index of 0.98 leads to a false-alarm prob-

pressure-to-rupturg,— p with q=0.6 andH = —0.5. The variables ability of 1% [21]- o _ _
are dimensionless. It is worth noting that the majority of the pair$i(q) in P
have similar oscillatory behavidr.e., similarw) indicating a

) . robust log-periodic signal. Moreover, we note that a log-
gfgnctlc_)q of Inp.—p) for the whole range of pressure. This periodic angular frequency which is too small may result
is insufficient to be able to conclude about the existence of,,, noise, as we just said. Similarly, a too high log-periodic

log-periodicity with good statistical confidence. To qualify angular frequency is also the signature of noise, simply be-

the existence of log-periodicity, pairs ofH(q) with .5 s it is easy to fit noisy data with many oscillations. We

(H,q)<w™ should be discarded, because, for these valynq|g thus also discard the pairs f,¢) whosew are too

ues, there is a non-negligible probability that the observegy ge Referencga] used this criterion to discard solutions
log-periodicity may result from noisy fluctuations around theih ,=>14. It is not always obvious to determine the value
power 'a".V and is thu_s spur|Olﬂ_$7]. _ ) of the angular frequency threshold beyond which solutions
A physically meaningful region of{,q) is thus obtained,  gqig pe rejected as noise. Fortunately, the Lomb faak
labeled byP (platform) and W (wedge in Figs. 3 and 4. . responding to a large angular frequency stemming from
Among these pairs, the optimal pat (q) =(—0.5, 0.6) cor-  ise is usually low21], as we observed in experiments No.
responds to the highest Lomb peBk=51.7, indicated by 4 and No. 6(not shown.
arrows in Fig. 3 and Fig. 4. It lies within the platfor We summarize in Table | the results of thd,€) analysis
shown in Fig. 3. Figure S gives the generalizpderivative o the cumulative energy release of data sets No. 1, No. 2,
for this optimal pair t,g)=(—0.5,0.6), while Fig. 6 plots No. 3 No. 4, and No. 6. For each data set, the generatjzed
its corresponding Lomb periodogram. The log-periodic OSC'I'anaIysis was performed betweepy{,, Pra), With @ number

Iatipns are found to_l_Je very significant._ Ideally, we should ¢ points varying between 55 and 164 as indicated in the
estimate the prqbaplllty that random noise, of several pla“'column “N" in the table. p, is the true critical pressure at
sible standard distributions, creates a false alarm that a Peupture. Py, is the optimal value of the Lomb peak height

andw (andw’ if it exists) is the corresponding angular log-

3
In(p -p)

60 ' ' ' - - - frequency of the highest pedkespectively the second high-
f=0.87 est peak The column “Gaussian” presents the false-alarm
50t . probability of the Lomb peak under the null hypothesis of
independent Gaussian noise. The column “fGn” evaluates
a0t ] the value of the Hurst index of a fractional Brownian noise

which would give a false-alarm probability 1% to get the
same peak as in our analysis. The larger this number is, the
more significant is the Lomb peak because a high Hurst in-
dex is very improbable as it implies an unreasonable long-
201 ] range dependence and persistence of the rj@ise
These two columns “Gaussian” and “fGn” thus give us a
10f 1 sense of the amplitude of the signal over noise ratio, from the
point of view of the statistical significance of the peaks
0 - P . S a VN found in the analysis. The conclusion derived from reading
0 1 L ety 6 7 these two columns is that it is highly improbable that the
g redueney obtained peaks result from a Gaussian noise and one would
FIG. 6. Lomb power of theH,q) derivative shown in Fig. 5. need a very strong persistence in a fractional Brownian noise
The variables are dimensionless. to simulate the obtained signatures. This holds regardless of

30f

Lomb power
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TABLE |. Summary of the results of théH,q) analysis on the cumulative energy release of data sets No. 1, No. 2, No. 3, No. 4, and No.
6. For each data set, the generaligeghalysis was performed betwegmy{,, Pma With @ number of points given in the coluni p. is the
true critical pressure of rupture. The columid,@) lists the optimal pairsPy is the optimal value of the Lomb peak height.andw’ are
the corresponding angular log-frequencies of the highest and second highe$ peskthe number of oscillations. The column “Gaussian”
presents the false-alarm probability of the Lomb peak under the null hypothesis of independent Gaussian noise. The column “fGn” gives the
Hurst index of a fractional Gaussian noise that would give a false-alarm probability 1% to obtain the same Lomb peak as in the signal.
Pressures are expressed in units of bars.

Tank N Pmin Prmax Pe (H,q) Py ) o' w™P Nosc Gaussian fGn

No. 1 144 453.5 711.5 713 —0.5,0.6) 51.7 55 / 1.8 4.6 5E-21 0.98
No. 2 138 467.5 661.5 673 (0.3,0.2) 34.4 10.0 5.3 3.3 4.5 2E-13 0.93
No. 3 63 671.5 756.5 764  H0.2,0.4) 145 4.5 9.9 3.8 1.8 5E-5 0.70
No. 4 56 671.5 746.5 756 (0,0.6) 19.0 5.5 175 4.3 1.9 3E-7 0.79
No. 6 72 614.5 723.5 734 —0.3,0.8) 15.7 12.7 54 3.9 4.9 1E-5 0.71

the rather small size of the data sets. Since the number gfreted as the first harmonic of the fundamental log-frequency
data points is limited, it is important to quantify as much asf=0.87. This log-frequency corresponds to the highest peak
possible the amplitude of the signal compared to that of thef data set No. 2 and to the second highest peak of data set
noise. To quantify the impact of noise on the detectability ofNo. 3. It is not unexpected to find in nonlinear systems that

log-periodicity in signals with short events series, we nowthe first harmonic may be a stronger power spectrum than the
estimate the signal-to-noise ratjo For this, we assume that fundamental frequency. The second highest peak of data set
the noise is independent of the underlying log-periodic comNo. 4 can be interpreted as the second harmonics of the
ponents. Since the events are not badly bunched, followinfundamental log-frequency. The highest peak of data set No.
[22], we have 6 occurs for a log-frequency almost exactly in the middle

N 202\ 71
PNZ— 1+? ,

5 14

whereo is the standard deviation of the noise afds the

range between the first and second harmonics and is thus less
credible.

These results taken together give a reliable indication that
there is a genuine log-periodicity of the energy release rate
before rupture in data sets No. 1, No. 2, No. 3, No. 4, and

amplitude of the signal. The signal-to-noise ratio defined aé\rl]o' 6. This confirmls an? _Ttrengthens the cla:]m ?jf FE@{)‘
y=Alo can thus be estimated by that a pure power law fails to parametrize the data but a

log-periodic formula does a much better job.
4PN 1/2
[ ( N— 2PN> ’

whereN is the number of event@lata points in one experi-  The (H,q) analysis has shown its power for detecting
men). Using this formula, we obtainegl=2.44, 1.48, 1.44, log-periodicity, conditioned on our knowledge of the critical
2.52, and 1.35 for the five tanks, respectively. Note that Eq.

(15) holds approximately for all types of noises, not only for 25
Gaussian noisf22,21]. These different tests confirm that we
are extracting meaningful information, above(admittedly

large noise level.

We find that all data sets taken together can be described
by a fundamental value of the angular log-frequenay
=5.4+0.5. To see this, we construct the average Lomb
power spectrum over the five Lomb power spectra for the
five experiments, which is shown in Fig. 7. The highest peak
lies at f=0.87, i.e., atw=27f=5.4. We cannot estimate
quantitatively the false-alarm probability of this average
Lomb peak since the different data sets have different sizes.
We observe that this log-frequendy=0.87 (or w=5.4) is
found to be very close to either the log-frequency of the 0 . .
highest or of the second highest peak of each individual 0 1 2
spectrum of the five data sets. This valtie 0.87 corre-
sponds to a preferred scaling raNe- et"=3.2x0.3. FIG. 7. Averaged Lomb power of the individual Lomb powers

The log-frequencyf,=1.60 (or w,=10.1) of the second of all the five data sets. The highest and the second highest peaks lie
highest peak of the average Lomb spectrum can be inteat f=0.87 andf,=1.60. The variables are dimensionless.

15
A9 IV. IN-SAMPLE PREDICTION OF RUPTURES
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T e Pr(Pe) =maxPy(po)}, (16

without further constraints om(p.).

In practice, we analyze the functidy(p.; H,q) of the
three variablep., H, andq in the following sequence: we
fix a value forp, and explore the planeH,q). We then
changep. and redo the exploration of the pland,q), and
so on. Figure 8 gives the optimal Lomb peak heiBhtas a
function of the presumed critical pressyrgfor experiment
No. 1 and forp,.=705.5. The highest peak is found for
p.=pY=722.5, which is the predictegl,, to be compared
with the true value 713.

This result is encouraging and we now attempt to improve
this prediction skill by requesting that the predicted
should not be too far from the last point, i.e., it is nonsensical

FIG. 8. In-sample prediction of the critical pressure of the rup-to predict too far from the “present.” To implement this idea,
ture of tank No. 1. The optimal Lomb peak heid?y is shown as ~ we modify formula(13) and imposew>kw™, namely,

a function of the presumed critical pressprefor experiment No. 1
and for pna=705.5. The highest peak is found fqr,=p{V Rl 1.5
=722.5, which is the predictep,, to be compared with the true 27" In(Pc— Pmin) = IN(Pc— Pmax) ’

value 713. The two fine arrows indicate the upper threshold of ) ) .
R - p ”
predictablep, estimated by Eq(18) with k=4/3 andk=1. The wherek=1 is a “safety factor.” This constraint translates

coarse arrow indicates the predicted critical presspfEsandp(®. into the following condition forp, :
The ordinate variable is dimensionless.

710 720 730 740 750 760 770
p, (bar)

17

Pmax™ Pmin

: : Pe<Pmaxt 5w - (18)
pressurep. at rupture. It is natural to ask whether it can be €M gdkmle g

extended to provide advanced predictiorpgf To carry out . ) )
these tests, we use the cumulative energy release which préhis constrain{18) means that there exists an upper thresh-

vided the strongest log-periodic signal in the analysis re9!d beyond which we cannot make a physically meaningful
ported in the previous sections. prediction. Since the left-hand side @f8) is monotonically
Our strategy is to use each data set up to a maximurificreasing withw, it is possible to make a prediction much
pressurq)max<pcl assume some value fqn'C, and perform earlier before the critical pOint, the Iarg@ris. This is natural
the same analysis as in Sec. Ill. For a given presumed critic&ince largaw implies more log-periodic oscillations and thus
point pc, we determine the Opt|ma| pa|“—|('q) For each a Stronger |Og—peri0diC Signal. To implement this condition in
presumedp;, we thus obtain the Lomb peak height Practice, we takew=>5.4 as the central value of the log-
Pn(H,q) and its associated angular log-frequenefH,q) periodic angular frequency. According to this constrair®),
as a function oH andg. In order to find the optimali,q)  fuptures of tanks No. 5 and No. 7 are unpredictable, since the
corresponding to the maximuRy(H,q), we add the criteria /@St pointpi, is too far from the true critical pressure.
discussed in Sec. Il Bsee formula(13)] to exclude those The results are given in Table II. The columpg) and
(H.q) with w(H,q)=<™. Having determined the optimal p(2 jist the predicted critical pressupg and its correspond-
Pn(pc) andw(pc) as functions of the presumed critical pres-ing upper threshold in the parentheses with the constraint
surep., we determine the predicted critical presspgeby  (18) for the two choicek=4/3 andk=1, respectively. The
the condition prediction for experiment No. 1 is very good. For the other

TABLE Il. In-sample prediction using theH,q) analysis on the cumulative energy release of tanks No.
1, No. 2, No. 3, No. 4, and No. 6. Colummg® and p? list the predicted critical pressung, and its
corresponding upper threshold in the parentheses with the congft8irfor k=4/3 andk= 1, respectively.
The meaning of the other columns is the same as in Table I. Pressures are expressed in units of bars.

Pc— Pmax
Tank Points  Prin Prmax w Pe Pe p¢H p?
No. 1 139 453.5 705.5 55 713 1.1% 72234 722.5761)
No. 2 149 4525 6625 5 673 1.6% 6881  686.5700
No. 3 65 671.5 759.5 4.5 764 0.6% 76365 767.5772
No. 4 56 671.5 746.5 55 756 1.3% 75955 755.5763
No. 6 74 614.5 726.5 6.4 734 1.0% 742.84) 758.5759
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experimentsf)c is found to be very close to the upper thresh-Sure at rupture. However, it can be a useful complement and
old. The predictions for experiments No. 2, No. 3, and No. 4confirmation to the parametric method, consisting in fitting
are reasonable while the prediction for case No. 6 fails comthe data to a log-periodic function with a power-law enve-
pletely. lope. Rather than analyzing the statistical significance of the
While these results seem rather good, they deteriorate exesidues of such a fit with respect to the presence of log-
tremely fast ag,.« IS decreased by a few tens of bars. periodicity, we can use the fitted value of the critical pressure
p. at rupture to perform arH,q) analysis and extraed and
its associated Lomb power spectrum in order to qualify its
statistical significance. This could be used to confirm/deny
In this paper, we have introduced a nonparametric tool fothe quality of the parametric fit.
the detection of log-periodicity in complex systems. We have
applied this method to analyze the cumulative energy release
during the period approaching critical ruptures. We have con-
firmed and strengthened previous parametric re$8ltshat
the cumulative energy release exhibit log-periodicity before We are grateful to A. Erzan for a discussion on Jackson’s
rupture. We remark that the data of the energy release raiategral and for supplying the corresponding references and
should have the same log-periodic structure. to A. Johansen for helpful comments. This work was sup-
The nonparametric method in its present implementatiorported by National Science Foundation Grant No. NSF-
does not seem reliable for the prediction of the critical presDMR99-71475 and the James S. McDonnell Foundation.

V. CONCLUDING REMARKS
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